General Description

The MAX9541/MAX9542 are quadruple-channel, 2:1 video mux amplifiers with input sync tip clamps. These devices select between two video sources and support up to four channels on each source. The MAX9541 has integrated lowpass filters that are optimized for standarddefinition video signals such as composite and red, green, blue (RGB). The filters typically have $\pm 1 \mathrm{~dB}$ passband flatness out to 9.5 MHz and 47 dB attenuation at 27 MHz . The MAX9542 has a wider bandwidth of 15 MHz because it does not have integrated lowpass filters, making it suitable for not only standard-definition video signals, but also video graphics array (VGA) signals with a 640×480 resolution at up to 85 Hz refresh rate.
Video signals are AC-coupled to the inputs of the MAX9541/MAX9542. The input sync-tip clamps set the internal DC level.
The amplifiers have 2V/V gain, and the outputs can be DC-coupled to a 75Ω load, which is the equivalent of two video loads, or AC-coupled to a 150Ω load.
Both the MAX9541/MAX9542 feature a low-power shutdown mode, in which supply current is reduced to $35 \mu \mathrm{~A}$.

Features
Quad 2:1 Video Mux Amplifiers
Reconstruction Filters with 9.5MHz Passband and
47dB Attenuation at 27MHz (MAX9541)
Fixed Gain of 2V/V
Input Sync-Tip Clamps
Shutdown
2.7V to 3.6V Single-Supply Operation
PART
PIN-PACKAGE STANDARD- DEFINITION VIDEO FILTER MAX9541AEE+ 16 QSOP\quadYes MAX9542AEE+

Note: All devices are specified over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operating temperature range.
+Denotes a lead(Pb)-free/RoHS-compliant package.

Applications
Automotive Infotainment
Functional Diagram

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

Quadruple, 2:1, Mux Amplifiers for Standard-Definition and VGA Signals

ABSOLUTE MAXIMUM RATINGS

Supply Voltage
$V_{D D}$ to GND
Input Pins SHDN $\bar{A} B$...............-0.3V to $+4 V$
Duration of Output Short Circuit to VDD or GND Continuous Input Current
Input Pins.

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
16-Pin QSOP (derate $8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)........... 667 mW Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Junction Temperature ... $+150^{\circ} \mathrm{C}$
Storage Temperature Range \qquad $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(V_{D D}=3.3 V, V_{G N D}=0, \overline{S H D N}=V_{D D}, \bar{A} / B=V_{D D}, R L=150 \Omega\right.$ to $G N D, T_{A}=T_{M I N}$ to $T_{M A X}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

Quadruple, 2:1, Mux Amplifiers for Standard-Definition and VGA Signals

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=3.3 V, V_{G N D}=0, \overline{S H D N}=V_{D D}, \bar{A} / B=V_{D D}, R_{L}=150 \Omega\right.$ to $G N D, T_{A}=T_{M I N}$ to $T_{M A X}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Power-Supply Rejection Ratio		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$		48	64		dB
		$\mathrm{f}=100 \mathrm{kHz}, 100 \mathrm{mV} \mathrm{P}_{\text {-P }}$			20		
Small-Signal Bandwidth		VOUT $=100 \mathrm{mV} \mathrm{P}_{\text {-P }}$ (MAX9542 only)			27		MHz
Large-Signal Bandwidth		VOUT $=2 \mathrm{~V}_{\text {P-P }}$ (MAX9542 only $)$			15		MHz
Slew Rate		MAX9542 only			65		V/us
Settling Time		Settled to within 0.1% of final value (MAX9542 only)			75		ns
Standard-Definition Reconstruction Filter		VOUT $=2 V_{\text {P-P }}$, reference frequency is $100 \mathrm{kHz}, \pm 1 \mathrm{~dB}$ passband flatness (MAX9541 only)			9.5		MHz
		VOUT $=2 \mathrm{~V}_{\text {P-P }}$, reference frequency is 100 kHz (MAX9541 only)	$\mathrm{f}=5.5 \mathrm{MHz}$		0.1		dB
			$f=9.5 \mathrm{MHz}$		-1		
			$\mathrm{f}=10 \mathrm{MHz}$		-3		
			$f=27 \mathrm{MHz}$		-47		
Differential Gain	DG	5-step modulated staircase of 129 mV step size and 286 mV peak-to-peak subcarrier amplitude, $f=4.43 \mathrm{MHz}$			0.4		\%
Differential Phase	DP	5-step modulated staircase of 129 mV step size and 286 mV peak-to-peak subcarrier amplitude, $\mathrm{f}=4.43 \mathrm{MHz}$			0.45		deg
Group-Delay Distortion		$100 \mathrm{kHz} \leq \mathrm{f} \leq 5 \mathrm{MHz}$, outputs are $2 \mathrm{~V}_{\text {P-P }}$			9		ns
Peak Signal to RMS Noise		$100 \mathrm{kHz} \leq \mathrm{f} \leq 5 \mathrm{MHz}$			71		dB
2 T Pulse Response		$2 \mathrm{~T}=200 \mathrm{~ns}$			0.2		K\%
2T Bar Response		$2 \mathrm{~T}=200 \mathrm{~ns}$; bar time is $18 \mu \mathrm{~s}$; the beginning 2.5%, and the ending 2.5% of the bar time is ignored			0.2		K\%
2T Pulse-to-Bar K Rating		$2 \mathrm{~T}=200 \mathrm{~ns}$; bar time is $18 \mu \mathrm{~s}$; the beginning 2.5%, and the ending 2.5% of the bar time is ignored			0.3		K\%
Nonlinearity		5-step staircase			0.1		\%
Output Impedance		$\mathrm{f}=5.5 \mathrm{MHz}$			8.07		Ω
All-Hostile Crosstalk		$\mathrm{f}=15 \mathrm{kHz}$			-82		dB
		$\mathrm{f}=4.43 \mathrm{MHz}$			-78		
Output-to-Input Crosstalk		$f=30 \mathrm{MHz}$			-68		dB
LOGIC SIGNALS (TV_SEL, VCR_SEL, $\overline{\text { SHDN }}$)							
Logic-Low Threshold	VIL					$\begin{aligned} & 0.3 x \\ & V_{D D} \end{aligned}$	V
Logic-High Threshold	V_{IH}			$\begin{aligned} & 0.7 x \\ & V_{D D} \end{aligned}$			V
Logic-Input Current	IIN					10	$\mu \mathrm{A}$

Note 1: All devices are 100% production tested at $T_{A}=+25^{\circ} \mathrm{C}$. Specifications over temperature limits are guaranteed by design.
Note 2: Voltage gain (Av) is a two-point measurement in which the output-voltage swing is divided by the input-voltage swing.

Quadruple, 2:1, Mux Amplifiers for Standard-Definition and VGA Signals

$\left(V_{D D}=3.3 V, V_{G N D}=0, \overline{S H D N}=V_{D D}, \bar{A} / B=V_{D D}, R_{L}=150 \Omega\right.$ to $\left.G N D, T_{A}=+25^{\circ} \mathrm{C}.\right)$

LARGE-SIGNAL GAIN FLATNESS
vs. FREQUENCY

VIDEO PSRR
vs. FREQUENCY

SMALL-SIGNAL GAIN FLATNESS vs. FREQUENCY

VIDEO CROSSTALK
vs. FREQUENCY

VOLTAGE GAIN
vs. TEMPERATURE

LARGE-SIGNAL GAIN vs. FREQUENCY

VIDEO GROUP DELAY DISTORTION vs. FREQUENCY

DIFFERENTIAL GAIN

Quadruple, 2:1, Mux Amplifiers for Standard-Definition and VGA Signals

$\left(V_{D D}=3.3 V, V_{G N D}=0, \overline{S H D N}=V_{D D}, \bar{A} / B=V_{D D}, R L=150 \Omega\right.$ to $\left.G N D, T_{A}=+25^{\circ} \mathrm{C}.\right)$

VIDEO SYNC-TIP CLAMP VOLTAGE vs. TEMPERATURE

QUIESCENT SUPPLY CURRENT vs. TEMPERATURE

Quadruple, 2:1, Mux Amplifiers for Standard-Definition and VGA Signals

$\left(V_{D D}=3.3 V, V_{G N D}=0, \overline{S H D N}=V_{D D}, \bar{A} / B=V_{D D}, R L=150 \Omega\right.$ to $\left.G N D, T_{A}=+25^{\circ} \mathrm{C}.\right)$

LARGE-SIGNAL GAIN
vs. FREQUENCY

VIDEO CROSSTALK vs. FREQUENCY

SMALL-SIGNAL GAIN FLATNESS vs. FREQUENCY

LARGE-SIGNAL GAIN FLATNESS vs. FREQUENCY

VIDEO GROUP DELAY DISTORTION vs. FREQUENCY

Quadruple, 2:1, Mux Amplifiers for Standard-Definition and VGA Signals

Typical Operating Characteristics (continued) (MAX9542)
$\left(V_{D D}=3.3 V^{2}, V_{G N D}=0, \overline{S H D N}=V_{D D}, \bar{A} / B=V_{D D}, R_{L}=150 \Omega\right.$ to $G N D, T_{A}=+25^{\circ} \mathrm{C}$.

VOLTAGE GAIN
vs. TEMPERATURE

Quadruple, 2:1, Mux Amplifiers for Standard-Definition and VGA Signals

Typical Operating Characteristics (continued) (MAX9542)
$\left(V_{D D}=3.3 V, V_{G N D}=0, \overline{S H D N}=V_{D D}, \bar{A} / B=V_{D D}, R L=150 \Omega\right.$ to $\left.G N D, T_{A}=+25^{\circ} \mathrm{C}.\right)$

VIDEO SYNC-TIP CLAMP VOLTAGE vs. TEMPERATURE

VIDEO SYNC-TIP CLAMP CURRENT
vs. TEMPERATURE

SYNC-TIP CLAMP CURRENT
vs. INPUT VOLTAGE

QUIESCENT SUPPLY CURRENT
vs. TEMPERATURE

Quadruple, 2:1, Mux Amplifiers for Standard-Definition and VGA Signals

Pin Description

PIN	NAME	
1	INOA	Video Input A Channel 0
2	IN1A	Video Input A Channel 1
3	IN2A	Video Input A Channel 2
4	IN3A	Video Input A Channel 3
5	INOB	Video Input B Channel 0
6	IN1B	Video Input B Channel 1
7	IN2B	Video Input B Channel 2
8	IN3B	Video Input B Channel 3
9	GND	Ground
10	$\overline{\text { SHDN }}$	Shutdown Logic Input. Connect to GND to place the device in shutdown. Connect to VDD for normal operation.
11	OUT3	Video Output Channel 3
12	OUT2	Video Output Channel 2
13	OUT1	Video Output Channel 1
14	OUT0	Video Output Channel 0
15	\bar{A} / B	Input Select. Connect to GND to select Video Input A as the video source. Connect to VDD to select Video Input B as the video source.
16	VDD	Positive Power Supply. Bypass to GND with a 0.1 μ F capacitor.

Detailed Description

The MAX9541 selects between two standard-definition video sources that can each have up to four video sigwww.D riafs, eforl lexample, RGB with composite sync (RGBS) or RGB with sync-on-green. See Figure 1. It is also possible to select between two sets of four composite video signals with blanking and sync (CVBS). With its integrated lowpass filter (10 MHz large-signal -3 dB bandwidth typical), the MAX9541 can provide the anti-alias filtering before an analog-to-digital converter (ADC) or the reconstruction filtering after a digital-to-analog converter (DAC). The incoming video signals can have any DC bias because the MAX9541 has input sync-tip clamps which restore the DC level. The output amplifiers have a
gain of $2 \mathrm{~V} / \mathrm{N}$. The MAX9541 operates from a single 3.3 V supply and consumes low quiescent power and low average power. In addition, the device also has shutdown mode.
The MAX9542 is similar to the MAX9541 except that it does not have the integrated lowpass filter. As a result, the typical, large-signal bandwidth of the MAX9541 is 15 MHz . Therefore, it can select between two video sources that can each have up to four video signals that are standard definition or VGA. A standard-definition signal set would be RGB with composite sync. A VGA signal set would be RGB with a 640×480 resolution and up to 85 Hz refresh rate. See Figure 2.

Quadruple, 2:1, Mux Amplifiers for Standard-Definition and VGA Signals

Figure 1. The MAX9541 selects between two sources of RGB with composite sync, filters the signals, and drives the signals into a display panel.

Quadruple, 2:1, Mux Amplifiers for Standard-Definition and VGA Signals

ZカS6XVW/LtS6XVW

Figure 2. The MAX9542 Selecting Between Two VGA Sources

Quadruple, 2:1, Mux Amplifiers for Standard-Definition and VGA Signals

Operating Modes

\bar{A} / B controls whether Video Input A or Video Input B is selected. See Table 1.
$\overline{\text { SHDN }}$ controls whether the device is on or off. See Table 2. In shutdown, the outputs are in high impedance.

Input

Each video source can provide up to four video signals. Every video signal must be AC-coupled to the MAX9541/MAX9542 through $0.1 \mu \mathrm{~F}$ capacitors. The MAX9541/MAX9542 have sync-tip clamps and bias circuits to restore the DC level of the video signal after the input coupling capacitor. When a video input is selected, the input has a sync-tip clamp, which accepts video signals that have sync pulses or that reach their minimum level during sync. Composite video with blanking and sync (CVBS) is an example of a video signal with sync pulses. The red, green, and blue signals in an RGBS signal set are examples of signals that return to their blank level during sync. The sync-tip voltage is internally set to 300 mV .
When a video input is not selected, the inputs to the MAX9541/MAX9542 do not distort the video signal in case the video source is driving video signals to another video circuit such as a video multiplexer. The inputs are biased at $\mathrm{V}_{\mathrm{DD}} / 3$, which is sufficiently above ground so that the ESD diodes never forward bias as the video signal changes. The input resistance is $220 \mathrm{k} \Omega$, which presents negligible loading on the video current DAC. The sole exception to this condition is IN3A, in which www.Dtherimput circuit is always a sync-tip clamp. Table 3 summarizes which input circuit is active, dependent upon \bar{A} / B.
In shutdown mode ($\overline{\text { SHDN }}=$ LOW $)$, a bias circuit is active on every input.

Table 1. $\overline{\mathrm{A}} / \mathrm{B}$ Logic

LOGIC STATE	MODE
Low	Video Input A
High	Video Input B

Table 2. $\overline{\text { SHDN }}$ Logic

LOGIC STATE	MODE
Low	Off
High	On

Multiplexer
The MAX9541/MAX9542 have quadruple 2:1 multiplexers to select between either Video Input A or Video Input B as the source of the video signal. When \bar{A} / B is connected to GND, Video Input A is the video source. When \bar{A} / B is connected to $V_{D D}$, Video Input B is the video source.

Video Filter

The MAX9541 filter features $\pm 1 \mathrm{~dB}$ passband out to 9.5 MHz and 47 dB attenuation at 27 MHz , making the filter suitable for standard-definition video signals from all sources (e.g., broadcast and DVD). Broadcast video signals are channel limited: NTSC signals have 4.2 MHz bandwidth, and PAL signals have 5 MHz bandwidth. Video signals from a DVD player, however, are not channel limited; so the bandwidth of DVD video signals can approach the Nyquist limit of 6.75 MHz . Recommendation: ITU-R BT.601-5 specifies 13.5 MHz as the sampling rate for standard-definition video. Therefore, the maximum bandwidth of the signal is 6.75 MHz . To ease the filtering requirements, most modern video systems oversample by two times, clocking the video current DAC at 27 MHz .
The MAX9542 does not have a filter.

Table 3. Input Circuit of Input as Determined by State of $\overline{\mathbf{A} / B}(\overline{\text { SHDN }}=\mathrm{HIGH})$

INPUT	INPUT CIRCUIT $\overline{\mathbf{A} / \mathbf{B}=\text { LOW }}$	INPUT CIRCUIT $\overline{\mathbf{A} / \mathbf{B}=\mathbf{H I G H}}$
INOA	Sync-tip clamp	Bias
IN1A	Sync-tip clamp	Bias
IN2A	Sync-tip clamp	Bias
IN3A	Sync-tip clamp	Sync-tip clamp
INOB	Bias	Sync-tip clamp
IN1B	Bias	Sync-tip clamp
IN2B	Bias	Sync-tip clamp
IN3B	Bias	Sync-tip clamp

Quadruple, 2:1, Mux Amplifiers for Standard-Definition and VGA Signals

Table 4. Quiescent and Average Power Consumption

MEASUREMENT	POWER CONSUMPTION (mW)	CONDITIONS
Quiescent power consumption	69	No load.
Average power consumption	175	150Ω to ground on each output. 50% flat field signal on each input.

Outputs
The video output amplifiers can both source and sink load current, allowing output loads to be DC- or AC-coupled. The amplifier output stage needs approximately 300 mV of headroom from either supply rail. The devices have an internal level-shift circuit that positions the sync tip at approximately 300 mV at the output.
If the supply voltage is greater than 3.135 V (5% below a 3.3 V supply), each amplifier can drive two DC-coupled video loads to ground. If the supply is less than 3.135 V , each amplifier can drive only one DC-coupled or AC-coupled video load.

Applications Information

AC-Coupling the Outputs

The outputs can be AC-coupled since the output stage can source and sink current as shown in Figure 3. Coupling capacitors should be $220 \mu \mathrm{~F}$ or greater to keep the highpass filter, formed by the 150Ω equivalent resistance of the video transmission line, to a corner frequency of 4.8 Hz or below. The frame rate of PAL systems is 25 Hz , the frame rate of NTSC systems is 30 Hz , and the frame rate of VGA is usually 60 Hz or www.Dtirgheet.4Theocorner frequency should be well below the frame rate.

Pin Configuration

Power Consumption
The quiescent power consumption and average power consumption of the MAX9541/MAX9542 are very low because of 3.3 V operation and low-power circuit design. Quiescent power consumption is defined when the MAX9541/MAX9542 are operating without loads and without any video signals.
Average power consumption represents the normal power consumption when the devices drive real video signals into real video loads. It is measured when the MAX9541/ MAX9542 drive 150Ω loads to ground with a 50% flat field, which serves as proxy for a real video signal.
Table 4 shows the quiescent and average power consumption of the MAX9541/MAX9542.

Power-Supply Bypassing and Ground The MAX9541/MAX9542 operate from a single-supply voltage down to 2.7 V , allowing for low-power operation. Bypass VDD to GND with a $0.1 \mu \mathrm{~F}$ capacitor. Place all external components as close as possible to the device.
\qquad
Chip Information
PROCESS: BiCMOS

Quadruple, 2:1, Mux Amplifiers for Standard-Definition and VGA Signals

Figure 3. AC-Coupled Outputs

Quadruple, 2:1, Mux Amplifiers for Standard-Definition and VGA Signals

Typical Application Circuit

Quadruple, 2:1, Mux Amplifiers for Standard-Definition and VGA Signals

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
16 QSOP	E16-4	$\underline{\mathbf{2 1 - 0 0 5 5}}$

